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Abstract 
 
This paper presents the mathematical basis, and some results, concerning the application of the Haar Wavelets as the 
expansion function in the Method of Moments. As an example, the surface charge density on a finite, thin plane 
plate, and the Eddy current problem, in which the main computational performance aspects are evaluated. Some 
computational optimization techniques are used, and their main aspects are stressed in the paper.  
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I. INTRODUCTION 
Regarding the formulation, in order to illustrate the proposed methodology, the main theoretical aspects of the 
Method of Moments and of the Haar wavelets, are here presented. For simplification, the one and two dimension 
applications are taken into consideration. 

 
a. Method of Moments 

 
Although the Method of Moments is a known numerical one, and the complete description and details of this 
method have already been presented in many papers, in order to guide the reader through the overall method 
explanation, a brief summary is here shown. In a simplified way, it can be mentioned that the basis of the Method of 
Moments is the application of approximation functions, like the following one [1]. 

 
 (1) 

 
In the aforementioned expression, αn is the unknown coefficients, gn is the expansion function, the pulse or the Haar 
wavelets, and “L” a mathematical operator. When the inner product, using a weighed function Wm, is carried out. 
 
 

 (2) 

The previous expression can be represented in a matrix form by [A][α]=[B], where [α] is the unknown approximated 
solution coefficients column vector, and the matrixes [A] and [B] are given by: 

( ) n nf xα g n= ∑ L

α g , W   f, W    para  m 1,2.....Nn n m m
n

< > = < > =∑ L
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(3) 

 
As a first application, the potential distribution on a finite and straight wire that can be calculated using the next 
equation is taken into consideration [2]: 

 
 
 

(4) 

Thus making use of the method of moments, knowing the approximated solution function f(x), the expansion 
function g(x) and the weighting function W(x), the potential on a finite straight wire can be estimated by the inner 
product of these functions: 

 
 
 

(5) 

Consequently, the surface density can be approximated by the N term expansion. If the wire is divided into 
uniform segments ∆=L/N, after applying the weight delta function of Dirac Wm = δ( xm – x’) = 1, the inner product 
will become: 
 

 
 
 
 
 

(6) 

 
Assuming the charges placed in the center of each subdivision in relation to the axis, substituting the values of x by 
the distance of the charge position to the point P(xm), we will have an integral that is only function of the x’. For a 
fixed potential V, the equation can be represented, using matrix notation, by [Vm] = [Zmn] [αn], in which Zmn is 
defined by [3]: 
 

 
 
 

(7) 

The same approach can be used, if a two-dimensional application is considered. If a square plane plate is considered 
as an example, we should remember that the potential in a finite and very thin plane plate can be evaluated by [4]: 
 
 

 (8) 

 
Thus, after applying the method of the moments, knowing the function of the approximated solution f(x,y), the 
expansion function g(x,y) and the weighed function W(x,y), the potential in a square plane plate, will be estimated 
by the inner product of these functions [5]: 
 
 

 (9) 

 

g , W    .... g , W f, W  n1 1 1 1
A g , W    . . . g , W ; B f, Wn1 2 2 2

g , W   .... g , W f, Wn n n n1

< > < > < >   
      = < > < > = < >      
   < > < > < >  

L L
L L
L L

a b1ρ(x', y')V(x, y, z 0) dx' dy' 2 2 1/24π a b [(x x') (y y') ]ε
= = ∫ ∫

− − − + −

( )
a1 g(x, y)W(x, y)f(x, y)V(x, y) = g, W,f = dx

R R x, y-a
∫

( ) ( )
ρ(r')1V x, y 0,z 0 dl'

4π R x,x'ε
= = = ∫

( ) ( ) ( )
( )

a g x W x f x1V(x) = g, W,f = dx
R R x-a

∫

( )m m

LN n
n

n 1 2 2
0 m

V(x) W ,f, gδ  x x   x  

g (x')1 'xα dx
4π

(x x') a
ε =

= = −

∑ ∫
− +

L

L
n

mn
2 2

0 m

g (x')
Z dx' 

(x x') a
= ∫

− +
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where, 
 
 

(10) 
 
Dividing the plate in equal segments and applying the weighed function as being the delta function of Dirac, we had 
that ( ) ( )mmm yyδxxδW −−= , being the inner product in the point given by: 
 
 

 

 

 
(11) 

 
Assuming the charges placed in the center of each sub division in relation to each axes, substituting the values of x 
and y by the distance of the charge position to the point P( mx , my ), we will have an integral that is only function 
of x' e 'y . For a fixed potential V, the equation can be represented, using the matrix notation, by [Vm]=[Zmn][αn], in 
which Zmn is defined by: 
 

 

 

(12) 

 

b. The Wavelets 
 
The analysis through the wavelets has been a good alternative in replacement of the classical analyses that utilize the 
Fourier series, chiefly when treating acoustic signals, interpreting seismic signals and in the solution of numerical 
methods applied to electromagnetism and electrostatics [6][7][8]. In general the wavelets can be defined by: 

 
 
 
 

(13) 

Some kinds of wavelets are mentioned in the literature, making it possible for new family models to be built from 
them, which adapt more appropriately to each case. Fig. 1 represents the Morlet or Modulated Gaussian wavelet, 
which is expressed by: 
 

 
 

(14) 

 
 
 
 
 
 

 

  
 

Fig. 1 - Morlet 

 

( )
1- 2a,b

x - bψ x = a ψ    a, b R,a 0
a

  ∈ ≠ 
 

2iω x x /20ψ(x) e e−=

2 2R(x, y) = (x - x') + (y - y')

( ) ( )0 m m m
N

n na b n 1
2 2 1/2a b m m

V(x, y,z ) W ,f, gδ x x δ y y

α g (x',y')
1 dx' dy'4π [(x x') (y y') ]ε

=

− −

= = = − − ×

∑

× ∫ ∫
− + −

L

a b
n

mn

-a -b
m m

g (x',y')
Z dx ' dy'  

2 24π (x x') (y y')ε
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− + −
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The Fig. 2 represents the Mexican hat wavelet, which is expressed by: 

 
 

(15) 

 

 

 
 
 
 
 
 
 

 

Fig. 2 - Mexican hat 

 

The Fig. 3 represents the Shannon wavelet, which is expressed by: 

 
 
 
 
 
 
 

(16) 

 

 

 

 

 

 

 

Fig. 3 - The Shannon wavelet 

c. The Haar Wavelets 
 

It was previously mentioned that many functions can be used as the expansion function: Among them, the pulse 
function, the truncate cosine function and the wavelets can be mentioned. Thus, after applying the method of the 
moments, and considering the Haar wavelets, a function f(x,y) can be approximated by: 
 

 
 

(17) 

 
In this equation “j”, and “k” are the resolution and the translation levels, respectively. 
Moreover, once the Haar wavelets, and the so-called mother function and scale function father are applied, the 
formulation, for two-dimensional applications, will result in a product combination, given by [9][10]: 
 

 (18) 

22 x /2ψ(x) (1 x )e−= −

( )
( )

πx
sin( ) 3πx2ψ(x) = cos( )         

πx 2
2

sinπx
,    x 0φ x = πx

1            ,    x = 0

≠





( ) ( ) ( )j,k j,kPk j=- k=-k = -
 f x,y = c x,y + d f (x,y)ψ x,y∑

∞ ∞∞
φ

∞ ∞∞
∑ ∑

(H) 1       0 x 0.5, and
(x)

0       for other intervals

 ≤ <φ = 
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(19) 

II. FORMULATION 
a. Finite Straight 
 
Thus, making use of the method of moments, and the wavelets the Haar the potential on a finite straight wire can be 
estimated by the inner product of these functions. As an illustration, the Fig. 4 represents the Haar function 
regarding one dimensions and two level of resolution [11].  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - The Haar wavelet in a finite straight 

 
The mathematical solution is: 

 
 
 
 
 

(20) 

 
 
 
 
 

(21) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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N H
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b. The thin plane plate 
The same approach can be used, if a two-dimensional application is considered. It was previously mentioned that 
many functions can be used as the expansion function. Among them, the pulse function, the truncate cosine function 
and the wavelets, the general aspects of the wavelets are shown.  As an illustration, the Fig. 5 represents the Haar 
function regarding two dimensions and one level of resolution, for a point P(xm, ym). On the other hand, if the 
potential in a finite and very thin plane plate is taken into account as an application, it can be evaluated by[12]: 

At each point we have: 
 
 
 
 
 
 

(22) 

 

 
 

Fig.5 - Representation of the Haar function for two-dimensions and  one level of resolution. 

At each point we have: 
 

 
 
 

(23) 

 

c. The Eddy Current problem 
 
Let us consider the conducting wire to be composed of filaments, having their length is represented by c and current 
density by J(r’), according to Fig. 6. 
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Fig. 6 - Current in the conductor 
 

The two-dimensional fields can be obtained by using two or more current distributions J1, J2... on surface S, which is 
the interface between the conductor and the air.  
By integrating it is possible to simplify the equations the most, so that there will not be complex integrals or 
approximations, as follows [13][14]: 

 
 
 

(24) 

 
In which r and r´ are respectively the origin and source points. The current density can be expressed by: 

 
(25) 

In which U0 is the applied voltage, c and s are the length and the sectional area of the conductor. Considering 
Fredholm integral, a second order equation is obtained: 

 
(26) 

In which the math operator in the previous equation is given by:  

 
(27) 

By dividing the domain into N elements, the current density can be approximated by: 

 
(28) 

By choosing the pulse as the expansion and weighting functions, the coefficients of matrix A can be determined by 
the following expression [15][16]: 
 

 

 

 
(29) 

or 
 

( ) ( )e s 0J r = J + J = -jωγA r + γU /c

( ) ( ) s
jωμγJ r =  J r' ln r-r' ds'+J2π ∫

s

jωμγ= 1-  ln r-r' ds'2π ∫
s

L

( )
n

1 1J r = Jψ ∑

( ) ( )

( ) ( ) ( )

m mmn n m
s s s

1 22 2
m n m n n

jωμγa =ψ , = P x,y ds - P x,y2π

*ln x - x + y - y P x, y dsds'

∫ ∫ ∫

 
 

WL

( ) ( )μ 1
A r = J r' ln ds'

2π r - r'
∫
S
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(30) 

 
Let us consider the sides of the elements resulting of the divisions performed in the superficial part of the conductor 
are square and defined as h. By eliminating the other ∆Sm terms in the equations amn and bm, considering the relative 
positions of the different charges that will form the elements of matrix A, and the relations d/h> 2 and d/h=1, the 
following will be obtained: 
 

 
 
 
 

(31) 

 
 
 
 
 

(32) 

 
if m=n 
 

 
 
 

(33) 

 
By solving matrix A{J}={Js} the current matrix will be  obtained.  

III. APPLICATION 
a. Finite wire 
 
Applying the aforementioned formulation, we got some results related to two applications: the first one related to a 
finite and straight wire, and another one regarding a thin plane plate. It is assumed in the two applications a constant 
potential distribution equal to1V, conform Fig. 7. 
Table I presents the results regarding the charge surface density on a 1.0m straight wire, when it is divided in to 16 
equal segments, as a function of the resolution (j) and the translation (k) levels. Those results can be considered as 
the ones suitable to validate this approach [17]. 
 

TABLE I : Charge surface density (pc/m) on straight finite as a function of the resolutions levels 
 

 Expansion Function 

Point Haar Wavelet (Level) Pulse 
 2 3 4  

1 8.835 9.376 9.957 9.957 
2 8.835 9.376 8.764 8.764 
3 8.835 8.274 8.411 8.411 
4 8.835 8.274 8.219 8.219 

( ) ( )

mn m m n

1 22 2
m n m n

mn s m s m

jωμγ
a =ΔS - ΔS ΔS *

2π

*ln x - x + y - y

b = J , W = JΔS

 
 

( ) ( )2 22
mn m n m n

jωμγ
a = 1- h ln x - x + y - y

4π
 
 

( )2
mn

jωμγ
a = 1- h ln 0,44705h

2π

( ) ( )

2
mn

2 2
m n m n

jωμγ
a = 1-1, 0065 h *

4π

*ln x - x + y - y 
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5 7.970 8.059 8.102 8.102 
… … … … … 
12 7.970 8.059 8.102 8.102 
13 8.835 8.274 8.219 8.219 
14 8.835 8.274 8.411 8.411 
15 8.835 9.376 8.764 8.764 
16 8.835 9.376 9.957 9.957 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7 - The surface charge (pC/m) on a 1.0m straight wire for 32 subdivisions  
 
b. The thin plane plate 
 
After applying the aforementioned formulation, some results were obtained. For example, the Fig. 8 represents the 
surface charge density in a square plate (1.0mx1.0m), submitted to a potential of 1.0 V. In this case, it was adopted 
16 subdivision for each of the axes, and the level 5 of resolution was applied to the Wavelets. Concerning the 
characteristic of the method, it should be emphasized that the application of the Haar wavelets originates scattered 
matrixes. Thus, we will have nulls coefficients that can result in a computing time reduction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8 - The surface charge (pC/m) on a 1.0 by 1.0m plate for 16 subdivisions  
 
The Table II presents the comparative results, regarding the computing time values function of the adopted axe 
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division number, with or without applying the null value detection routine [18].  

TABLE II : Computing time(s) function of the axe subdivisions and of the null value detection use 
 

Divisions Computing time (s) Difference 
Plane Plate Without With (%) 

4x4 0.321 0.25 22.12 
8x8 7.931 5.488 30.80 

16x16 451.960 222.60 50.75 
32x32 27,273.738 11,994.487 56.02 

 
In applying for a finite flat plate, we measured the execution time of the program, varying the number of divisions in 
each of the axes, measuring both the amount held in floating point operations as the runtime. The Table III shows 
the valuesobtained for the total execution time and the amount of floating point operations performed, using as 
expansion function the Haar wavelet. 
 

              TABLE III: Calculation floating point operations and the execution time depending on the number of divisions of the 
plate 

 
Divisions Floating point 

operations  
Runtime (s) 

4X4 29.075 0,321 

8X8 1.236.699 7,931 

16X16 70.025.893 451,96 

 
Taking advantage of the fact that the Haar matrix is sparse, we reduce the execution time of the program by entering 
a comparison that, when the null value is detected, the transaction between the arrays is performed. The Table IV 
presents the results comparing the values of the runtime and the number of floating point operations, with and 
without detection of null values. 

 
              TABLE IV: Amount of floating point operations and execution time (s), depending on the number of divisions of the 

plate with and without detection of nulls 
 

 Nulls value Diference  

Div. Without detection With detection (%) 
 
 

Flops 
operation 

Runtime Flops 
operation 

Runtime Runtime 

4X4 29.075 0,321 25.491 0,250 22,12 

8X8 1.236.699 7,931 843.483 5,488 30,80 

16X16 70.025.893 451,96 39.748.26
1 

222,60 50,75 

 

According to the results, reduced on average 40% run time of the program. The Fig. 9 (blue color) shows the values 
obtained for the runtime with and without detection of null values, depending on the number of divisions of finite 
flat plate. 
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Fig.9 - The computing time (s) as a function of the subdivision axe number 
 

When the plate was divided into 16 equal segments on each axis, a total of 256 coefficients were generated with  
 
 
54% of them are zero. Taking advantage of the fact that the Haar matrix is sparse, applying the matrix algebra we 
can write that 

 
 (34) 

where, Zmn is a square matrix that is not necessarily a scattered one, since it depends on the expansion function that 
was chosen. Thus, taking advantages of the fact that the Haar matrix is a scattered matrix, applying the matrix 
algebra, it will result [19]: 
 

 (35) 
 
else, 

 
(36) 

 

 (37) 

 

 (38) 

 
As estimation, when the null value detection routine is carried using the null value detection routine. The Fig. 10 
represents the Haar matrix and Fig. 11 and 12 presents the Z’

mn matrix configuration for the threshold equal to 
0.01%, and 0.05%,   
respectively. The dark part is the no null values. 

Fig.10 - The Haar matrix 
 

[ ] [ ] [ ] [ ] [ ]
1T T

mnH Z H Hρ H V
−

   × × × × = ×   

[ ] [ ] [ ]mnZρ V∗ =

[ ] [ ] [ ]mnZ'ρ' V'∗ =

[ ] T
mn mnZ' H  Z  H    =      

[ ] [ ] [ ] [ ] [ ]
1

T ρ' H * ρ  and V' H  V
−

 = =  
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Fig.11 - Value of the threshold of 0.01% (23528 non-zero elements) 

 

 

Fig. 12 - Value of a threshold of 0.05% (12232 non-zero elements) 
 

The Table V, shows the computing time, when the threshold level and the axe subdivision number are taken into 
account. 

TABLE V: Computing time(s) as a function of the axe subdivisions and of the adopted threshold level 
 

Subdivision Threshold levels (%) 

0.00001 0.01 0.05 0.1 

16x16 0.27 0.21 0.16 0.12 

32x32 25.486 11.49 4.516 2.073 

 

The Fig. 13 represents the error variation for the charge surface density, considering a square plane plate, and 16 axe 
subdivisions, as a function of the selected threshold. 
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Fig. 13 - Variation of the charge surface density as a function of a selected threshold 
 
Therefore, the variation of the threshold allowed a significant reduction in execution time without significantly 
changing the value of the surface charge density.Moreover, it should be mentioned that the Cholesky decomposition 
method were also implemented [8]. The Fig.14 represents the matrix configuration after applying it, assuming a 
threshold level equal to 0.01%. In this case, approximate increase of 64% was obtained in the null value element of 
the matrix. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14 - Matrix configuration after applying the Cholesky decomposition for the threshold equal to 0.01% 

Regarding the computational performance, the average computing time decreased from 0.21 to 0.02 (s), for 16 axe 
subdivision, and a reduction time from 11.49 to 0.351(s). 

c. Eddy current problem 
 
In the application here presented, a copper conductor with the conductivity of 1.72 (µΩcm) and resistivity of 100% 
as shown on Table VI [20]. The Fig. 15 shows the reactions of the electromagnetic field and the involved energy 
considering the influence between the charges using the developed program.  

 

TABLE VI: Material Characteristics 

 
Material 

Type 
Resistance 

(µΩcm) 
Conductivity 

(%) 
Aluminum (99.9) 2.65 64.84 

Bronze 12 14 
Copper 1.72 100 
Nickel 37 4.5 
Gold 2.36 76 
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Fig. 15 - Electric field simulation 

 
Therefore the final equation for each one of the elements that compose the current matrix can be expressed by: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(39) 

 
The solution of the previous equation can be obtained by using the expression [amn]*[Coef]=[U0] [21][22].  
The Fig. 16 was obtained through the use of the application toolbox and shows the results of the coefficients in 
relation to the several resolution levels. The numerical values are available in the application as well [23]. It shows 
the statistical data for a 0.01% threshold with level 5 resolution. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16 - Wavelet Coefficients as a function of the resolution level and statistical data 

IV. CONCLUSION 
This article has simply a series of applications of wavelets, such as the surface density in a finite straight wire and a 
flat plate, and the determination of eddy currents using the pulse and as a expansion function of the Haar wavelet. 
The proposed methodology permits the determination of the available numerical coefficients in the application as a 
function of the resolution level, this way avoiding the complex solution of the inner product, usually composed of 
double integrals that do not possess a very immediate solution.  

( )

( ) ( )

( ) ( ) ( ) ( )

2

a b
2 2

m n m nj j
-a -b

j,k j,k
j=- k =-

a b H 2 2
m n m nj,k

-a -b

jωμγ
A x,y = 1- * h *

4π

*a b ln  (x,y) x -x + y -y' dxdy +

+ a b *

* lnψ x,y x -x + y -y dxdy

∞ ∞

∞ ∞

  φ∫ ∫   
  

∑ ∑

  
∫ ∫   
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By performing the product of the current matrix by the Haar wavelet [amn][Coefficients][Haar]=[U0][Haar] and in 
some cases reductions in execution time of up to 40% has been achieved.With this reduction in run time no 
significative variation in the amn elements that could compromise the final results has been found.Although the 
proposed application is relatively simple, the presented methodology is likely to be applied to problems of greater 
complexity, such as a refinement can be achieved in energy in locking electric motors, cardiac signals, transmission 
lines, electromagnetic compatibility, financial market, corrosion or thermal treatment, neurological treatments and 
etc. 
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